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I. INTRODUCTION

Integro-differential equaticns arise in many engineering and scientific disciplines,
often as approximations to partial differential equations, which represent much of
the continuum phenomena. Many forms of these equations are possible. In this re-
port, we study identification of inlegro- differential equations, pronosed to describe
unsinady aerodynamics and aeroelasticity phenomena. The forms of equations stud-
tes in this report are closely related to the research of Tobak and Schiff [1-4] among
otlhers.

Let us consider the symmetrical longitudinal dynamics of an aircraft. In the
linear quasi-steady regime, the aerodynamic pitch-moment coefficient, ¢,, , can be
written as a linear combination of angle-of-attack, o , pitch rute, ¢, and elevator
deflection, &, .

[+

Cm = Cm., + Cmoa’ + oV

Crn, g+ cmg, b, (1)

The equation for the pitch coefficient implies that its values at any point in time
depends only on the instantaneous values of « , ¢, and 6. . This is a good approx-
imation in quasi-steady flow. In regions where the flow field is highly unsteady, or
if the elevaior deflections are changed rapidly, it is reasonable to believe that the
pitch moment coefficient depends on the past as well as the instantaneous values
of the flow variables. Such conditions may occur in separated flow regions such as
high angle-of- attack, stall, or spin. A reasonable extension to include past history
of a in Equation (1) would lead to:

T
Cm = Cp, + Cm at [ Fo (r)a(t = r)dr + ?Z-%C'"’q + Crny, be (2}
s

Of course, g and §, terms could be expanded similarly. Using the above equation
for pitch movement coefficient, the pitch rate dynamics would be as follows:

T
14 = Gunc{Ciny + Ot [ P (rslt = 1)dr 4 557Cmyq 4 O 62} (3)
[4]
where :

I : Pitch moment of inertia

q : Dynamic Pressure

s : Reference area

¢ : Reference wing chord

V . Air:raft Speed

We, thus, have the simplest form of integro-differential equation arising in un-
steady aerodynamics. Similar results have been obtained by more systematic aero-
dynamic analyses. The integral termm may also be written in terms of & ag it is
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usually done in aerodynamic analysis. Suppose we write ( assuming o = 0 for

oo

Cm=qm+fﬂmhﬁ0—ﬂh+iﬂ%ﬂ+awﬁ (4)
1]

The form has been referred to as the indicial representation by acrodynamicists (3]
This equation is equivalent to Equation (2). Integrating the ¢ term by parts:

/H,,,d (riaft — r)dr = ~H, (r)a(t - )T + f I;r,,m (f = r)aft — r)dr
=Hmwhm+[HmU—ﬂqhﬂw. (5)
0

Thus, Equation (4) is equivalent to Equation (3), if

LImd (0) = Cmn

and

d
— = f <
d‘r‘f{md ﬁrnn 0 =T S T

=Q T<r (8)

It is reasonable to assume that in quasi-steady flow H,,,(;) will reach a constant
vilue as r — oo . In practice, i{ is often convenient to use one form for identi-
fication and convert it into the other form for analysis and understanding of the
acrodynamics phenomenon involved.

In unsteady aerodynamics and aeroelasticity, Equation (3) could be generalized
in any of the following ways and possibly others.

(a) Cua)Coms Cm, , and C,,,, could be nor.linear [unctions of angle-of-attack, pitch
rate and elevator deflection.

(b) The equation for C,, could involve double or higher order integrations, in-
volving products of independent variables,

(c) Full six degree-of-freedom dynamics would bring in nonlinear kinematic
terms.

This report addreses the following problems:

(a) Section 2 develops techniques for identifying integro- differential equatisns
models from test or simulation data.

(b) Section 3 shows when the the integro-differential equation may be approxi-
mated by an ordinary differential equation.

(¢) Conditions under which the integral term may be identified accurately are
analyzed in Section 4.

The concepts developed in the previous sections will be applied to simulation

data and high angle-of-attack test data in Section 5. Section 6 gives summary and
conclusions of the results presented in this report.

2
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II IDENTIFICATION OF INTEGRO-DIFFERENTIAL EQUATIONS

The problem of estimating aircraft stability and control parameters has been
researched extensively and many solutions have been proposed [6-8]. The identifi-
cation of integro-differential equation models poses difficullies such that previous
methods need to be extended. The discussion in this section will be limited to the
form of Equation /3). As has been shown in the previous section, Equation $3) is
equivalent to thc ,rm involving & in the integral. Equation (3) is more suitable for
identification, because « is usually measured while & is not.

The identification problem for the pitch moment equation (3) involves the de-
termination of (a) parameters C,.,,Cin, ,C,and C,,, , (b) function F, (r) 0< 7 < T,
and (c} 7. For the purpose of our discussion, we will assume that measurements
q{t), a(t), andé.(¢t) are available from a flight test at sample points ¢,k = 1,2...N. Other
measurements can be included in the identification process without changing the
procedure significantly.

The problem of identifying integro-differential equation models is, thus, different
fromn the parameter estimation problem because it is necessary to identify a function
in addition to parameters. There are two approaches to address the identification
problem - identify the function directly, or approximate the function. In this section,
we discuss each of the approaches.

2.1 Direct Identification of Integro-Differential Equations

To estimate the F,,(t) and the parameters, we consider Equation (3) and min-
imize the following performance index by choosing C,.,,Cum.,Cn,, and C,,, , as well
as F,,. (7).

1 N
'“Z qm(k) k)) (7)

z-o

The first gradient of J with respect to F,,_ (r} is computed as follows:

N
gr(t) = == (amlk) — 9(k)) 57— (8)
’na k=1 aFf‘a
and
d  dgq Joo 82 dg
= = ! - A +
alar, )= T lelt-na+ gp] @)

where A represents a small region around r over which F, (r) is perturbed. Note
that because F,, . (r) is a continuous function, perturbation in F,_(r) at a single
point will not change the value of ¢ at all, since that will not change the integral.
To perform any uniqu. identification at all, it is necessary to assume that £, (7)
possesses certain continuity properties. This is in any case a good assumption for
most physical systems.

Since o and g are highly nonlinear {unctions of F,,_ (r) , an iterative procedure
is needed to optimize the likelihood function. Either a first or second gradient

3
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procedure can be used. In a first gradient approach, we could start from a initial
value of 7, (r) and update it as follows ( & represents iteration number)

Foa kst = F, (7 € 90 (7) | (10

The value of ¢ is selected based on a line search. The procedure can be repeated
many times until convergence occurs. A second gradient approach could also be
used.

The determination of the first gradient can be computationally time- consuming.
Note that the first gradient is a function of + and must be evaluated for all values
of . That would require differential Equation (9) to be solved for all r. Second
gradient would be even more difficult to compute. Thus, it would be desirable [rom
a computational point of view to divide up the interval betweein 0 and T into M
inlervals and estimate the values of F,,_(r) at M + 1 individual points, e.g.,

Fm“(i%), 1=0,1,2,...M (11)

This would require the solution to M + 1 equation of the form of (6) to get the
first gradient. To cut down the computation time, it is also possible to start with
fewer intervals in early iteration and increase the number of intervals as the problem
converges.

The problem of identifying T can be handled in one of two ways. One approach
is to select a large enough T and estimate #,._(r) . In principle, the estimated values
of £, (r} for r greater than the true value of T should be small or zero. Else an
csll.limate could be obtained by computing the gradients of the cost lunctional as
follows:

N
= a_T = Z am (k) — alk)} =5 (k) (12)

dq
My é“j‘;}

d aq}_qmar{

o 61‘ 7 Fo (Ta(t - T) 4 C

(13)

The joint estimation of Cm,,Cim,,Cm,, and Cu,, , Fuolr) , and T is a straight
forward extension of the above procedure. If £, (r) is estimated at many points, a
first order gradient procedure may be the only viable option. For estimating a few
points on the F, (r) profile, a second gradient procedure is also usable.

2.2 Identification of Integro-Differential Equation Models by Approximation

Assumptions for Approximation

The identification problem is considerably simplified if the integral term is ap-
proximated by a sum of predefined functions, called basis functions. These approxi-
mations convert unknown functions into a small number of parameters, but require
the following assumptions.

1. £, (r) a1d other unknown functions have small high frequency components
(note thut since a multiplies F,, (r) , the integral term in Equation (3), can
be a major contributor to the pitching moment at high frequency).

| vh



2. F,.(r) and other unknown functions have finite tails; i.e., are zero for r > 7.
3. F,..(r) s a continuous function, which converges quickly with any reasonable
sel of basis functions.

‘This identification procedure, therefore, consists of two steps - representation of
indicial function F,, (r) by a set of basic functions and associated parameters, and
then estimation of the resulting parametric models.

Representation of Integro-Differential Terms

Smooth funclions have been pararneterized in many different ways. For the
purpose of identification, the following forms appear most appropriate.

(1) Polynomials: F,_(r) is written as a polynomial in «

Fu it) & Ao + At 4+ Agr? 4 e , 0<r<gT
2 0) T<r (14)

Ao, Ay, Az, As are the unknown parameters. Numerical conditioning can be
improved by either
(a) expanding the polynomial in ., or
(b) using orthogonal polynoimials.
(2) Splines: Linear, quadratic on cubic splines are excelient approximation

to most continuous functions. Splines are polynomials whose coefficients
change 2t certain break points, called knots [9]. The cor.flicients change in
a constrained way to ensure continuity at knots. The unknown parameters
are the polynomial coefficients as well as knot locations.

B-splines arc preferred from a numerical viewpoint [9).

(3) Impulse Response of Rational Models: This form is useful when T — oo,

since any other form requires too many parameters. The Laplace transform
of F,..(r) could be written as a rational function of s

Puuls) = 503 (15)

To ensure that F, (r) — 0 as r — oo, D(s) must have stable poles. For
example, £, (r) might be written as :

(8)=(a 2)(8)+(8)a 9

t
[ Fuolt=natridr s ci6s + eata (1)

=00

This will correspond to

N(B) _ bl + bg
D(s) s+a; s-+ag

(18)

This form has been used in aeroelastic studies.



(4) Stepa: The indicial functions could be wiite 1 as

T
an{r) =a, 0£r%g ';;

=0, T<r (19)

Identification Procedure

Once the integro-differential equation model is converted into a parametric form,
previous estimation procedures can be used to determine the parameters as well as
the model form [6]. The entire procedure is shown schematically in Figure 1.
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[1I. APPROXIMATION OF INTEGRO - DIFFERENTIAL LQUATIONS

In this section, errors in approximating integro-differential equations by ordi-
nary differential equations are estimatled. The analysis addresses the specific class
of cquations encountered in unsteady aerodynamics and aeroclasticity.

Consider the integral term in Equation {2). Under certain conditions, this term
is approximated as an add on to C,,,. In the current analysis, we assume that the
approximated form represents the entire pitch momert coefficient due to angle-of-
attack.

T
f Fu,(r)a(t — r)dr = G, alt) (20)

0

where C,., i3 a const..nt . For the two sides to equal in steady-state

T
/.Fm,.("")‘:i'r = C"m,, {21)
Q
The approximation error is
T
= [F,,,"(r)a(t ~ 1)dr = Com, a(t) (22)
0

In the discussion of the approximation, we assume that «(t) is a continuous
function with no jumps, such that &(t) can be defined at each point. Since the
secant slope cannol exceed the maximum tangential slope in an interval, we get :

ot - 7) — a(e)]] < 7lldmaz ()] (23)

where &4, (t) is the maximum value of & in the time interval from i1—r to t . Equation
(22) therefore can be written as :

T
(= f Fon, ()a(t — 1) = a(t))dr
D'I'
< [ | Fone (7)1 ((t = 7) — (&)} ][dr
° T
< e (®) [ 1P (1)l (24)

Thus, the maximum error depends on &npa-{t) and the first moment of F, {r) .
If we make no assumption about the nature of F,_(s} , then

aoTmmE -
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¢ € Tapmuz(t)Cm, : General (2R)

For rectangular and triangular F,_(r} , the approximation takes the forms

1.,
€< iTa,,m,(t)C.,,“ i rectangular

1,.. .
€< §Ta,,...,(:)c,,,r_ : triangular

Since the maximum approximated value of the integral term is Cinaamaz{t), the
relative error becomes

€y S q‘gf:‘:*:g—i; : General c"la (T)

< _I_Tdrmu: (t)

2 qAmax (t)
_1_Tdmu:: (5)
3 Dz (t)

rectangular {26)

EA

triangular

A similar result is obtained in approximating Equation (4) (Appendix A)

These error equations can be further simplified for improved understanding for
motion at a single frequency w. In that case

Qrnaz A WeXyyag (27)

So the relative error may be written as :

[ S wT : Gcﬂﬂrﬂ[ Cm,n (T)
< -z-wT : rectangular
1 .
< EwT 1 triangular

The error introduced by the approximation increases with frequency of the motion
and the maximum time delay for which the integral term is significant.

What do these two lerms depend on? The frequency of the motion varies with
applied inputs, natural short period dynamics and external disturbances. Most
fixed-wing aircraft appear to have the natural frequency of the short period dy-
namics in the neighborhood of 0.5 Hz, though this number could be different for
nonconventional iircraft. Pilot applied inputs are typically less than 1 Hz. Most
turbulence spectra is also below 1 Hz.

Two factors can increase w significantly. First, unsteady aerodynarnics, vortex
shedding and stall/spin can cause large rapid motions. Secondly, the aeroelastic

phenomenon, because of high structural frequencies, almost always occurs at higher
values of w.

8
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The time T can be physically thought of ns the delay in reestablishing o new
flow field following a change in one or more aerodynamic variables. Under quasi-
steady conditions, T is proportional to the time taken by the flow fleld to travel a
characteristic distance L. Thus

L
o 8
T (26)
where V is aircraft speed. Thus T increases al low aircrall speed. If there is little
or no interaction between the wing and the tai', the characteristic distance is the

wil'g chord, while it could be as large as the aircraft length if vortex shedding at
the nose can impact the tail.

Let us evaluate three vituations to determine if the integral term can be impor-
tant in evaluating pitching moment coefficient (in cach case assuming the integral
term is no worse than a triangular form).

Case - A fighter aircraft 60’ long 10’ wing chor, traveling at 800 {t /sec . Short
period natural frequency is 0.5 Hz

po 10 1
800 80

1 1
< %20 Gow — =013
c'“"S* [l ‘80

Case 2: The same aircraft in stall, nose/wing vortices hitting tail, forward speed 120
ft sec , forced dynamict at 0.75 Hz

€ <1t2t7rt 75t£9~-* 78
"~ 3 ' 120 -
Casec 3: The same aircraft with flutler behavior near 4 Hz. Forward speed 1000 fi
sec , Unsteady aerodynamics requiring twice the normal time to settle down

£ < %:2‘#1402—1%%6=.17
The integral terms could be important in the last two cases. It has been conjectured
by Tobak z.ud Schiff [4] that in the quasi-steady state region at low angle-of-attack,
the indicial terms are not important.

It should be noted that applying high [requency inputs does not necessarily
make the indicial term more important. At high frequency, large amplitude inputs
are needed to produce small motions in e and 4 . Thus, even though the indicial

term is significant compared to C,,_ ¢, both of these terms could be small compared
to the G, 6, term,

The main result of this section is therefore, as follows.
The integro-differentsal equations arsstng in unateady acrodynamics and aeroclasticily may be
approzimated by differential equations when
wl << 1

where w 13 the natural frequency of the motion and T 1s the time delay over which the indietal
function {1 significant,

P K P - R )
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IV.IDENTIFIABILITY

To study the identifiability problem, we will start with a more general mode)
for the pitch moment equation

c

1§ =qoa3e{Cm, + Cpu a1 v

o
Cm,q + Cm.g,(se + / F".,,Ct(t - r)dr
0

o9

o]
1 2%,. /F,,.'q(t r)dr ~i-fF,,.‘_6,(t - r)dr {29)
0

{1

The identifiability of the single-axis planar motion is analyzed to indicate some
basic limitations to obtaining the values of functionals in integro-differential models.
el us assume that the aft) and 6,(t) can change independently. Correlation between
aft) and 6.(t) , caused by aircraft dynamics, will further reduce identifiability. It is
also assumed that reference values of ¢(t}, and aft) and 6.(t) are selected such the
(', is zero.

Because of superposition, the identifiability of linear systems can be determined
by considering a set of inputs at various frequencies and amplitudes. Let us write
Equation (24) in the frequency domain

. . T . c . .
JWQ(JW) = T{Cm.. + Cin, Q(Jw) - 2_V"Cm"-7(.7w) -+ Cma, 63(]“)

+ Fon, (qw)a(jw) + éi‘; Fo (jw)q(iw) + Fin,, (w)b.(jw)) {30)

We will apply sinuscidal inputs to the aircraft . Let

o= g el

b0 = 6,67

To evaluate identifiability, we can select two linearly independent combinations
of «, and ¢4, , e.g.,

a,=1, 6,=0; and
ap=0, §,=1. (31)

Because of linearity, other values of a, and 6, do not affect system identifiability even
though they lead to reduced estimation errors in parameters which are identifiable.
Thus at any w there are four scalar equations (two complex equations) and nine
unknowns (Cy,, Cm,,Cm, and real and imaginary parts of F,,, , F,,, and F,,, . The
parameters C,,,, Cm,, Cn,, are not functions of frequency.

At zero frequency, we have two equations and three unknowns { Cu.,, Cu,, Cuny, ).
The zero frequency input data provides a mechanism to solve for C,, and C,,in

10
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terms of C,,,, ( or any two variables in terms of the third). Thus, al any frequency
there are four equations and seven unknowns, Without further assumptions, linenr

indicial function representation in the pitch plane is not complaetely identifiable from
flight test date,

The inclusion of C,,, in terms of C,, by including a test point al «, - 0 and
4, = 0 in addition to the two test points described by Equation (26).

The non-identifiability of F,,, Y) y P (1), and F,, (1) indicates thal lurther con-
straints are nceded on the general nature of these functions.Some of the properties
which should hold becnuse of the basic nature of fluid flow can be used to bring

about identifiability. These propertics relate to smoothness condition discussed in
Section 2.

11
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V. SIMULATION AND FLIGHT TEST RESULTS

Many integro-differential models har e been identified using the approaches dis-
cussed in previous sections. This section shows results obtained from a simulation
model. The goois of the presentation is to iilustrate the theoretical results. Finally,
a (light test data set is studied in the next section to qualitatively evaluate the need
{or indicial terms.

5.1 Simulation Data

Thy simulated model is of the {orm

a=Zya-lg
T

G = Maor + Myq + M6, + / M, ()t - r)dr (32)
4]

A dimensional model has been selected to eliminate various scaling parameters. The
following values are used in simulations, throughout

Zo=~2, My=-5, My=—-2, Ms, = -5 (33)

Note that we have selected an indicial term in ¢, a linear combination of & and «.
Of course, this term can also be written in terms of «, usinyg integration by parts.
The characteristic equation of this mode’ s s? 4 45+ 9 . So the natural frequency is
3 rad sec (about i Hz).

In our simulations, we chose two valucs of T, .56 and .0, w7 then is 1.5 and .15,

wl - 1.5

The modcled form of M,(t) is shown in Figure 2, The simu'ation model was
developed rapidly using System_Build , a feature of MATRIX, [10]. The block
diagram is vhown in Figure 3. An inpui time history shown in Figure 4 is applied
Lo give an a , ¢ , § response of Figure 5.

Al first least squares estimation approach is used and ¢ is derived by diffeienti-
at'ng q (a simple two point differentiating is used throughout). The . esulting model
without noise is shown in Figure 6. Almost all of the error is due to uncertainties in
oblaining ¢ from gq. The estimated parameter values are exact if simulation valies
of ¢ is uses 7 rectly in estimation.

Figure v shows the effect of adding nolse to ¢ on model estimation accuracy.
Table 1 shows theoretical values of estimation error for random noise in ¢ . These
results indicate that the least squares approach does not give an acceptable estimate
for indicial models unless a more complex input is used. The least squares method
nevertheless is good for selecting significant terms.

The approximation to this indicial model would be as follows.

g= - Foy—2q—~ 586, - 2.1, (34)

12



When ‘an - attempt -is ‘made- to- 1dent1fy ‘this? h'lodel ’the estlma.ted parameters are
shown in Table 2 and the fit error to q is shown 1f1 Flgure 8. T ‘

_ Ma.xxmum likelihood technlque is used to estlmate the 1nd1c1al model from nmsy
measurements of angle-of-attack, «, and plt(.‘.h rate g. The estimated indicial function
is shown in Flgure 9 a.nd the ﬁt to @ and g tlme hlst Dry is shown in Flgure 10..

wTOlS__ T

The indicial function is now spread out over fhe first .05 sec; but is scaled up by
a factor of 10 from Figure 2, such that the approximation is the same as in Equation

t(34) The input is the same as betore. The responses are shown in Figure 11. The
ollowing steps are repeated.

(1) ¢ is obtained by differentlatmg g and the 1nd1c1al model] is 1dent1ﬁed The
results are shown in Figure 12 and are much poorer than before.

(2) The estimates are so poor without noise that very little noise causes the
- estimates to lose all accuracy.

(3) Table 3 shows that the simplified model may be identified better than for
wT = 1.5 . Figure 13 shows fit errors in ¢ .

(4) Apphca.tlon of maximum likelihood approach does not aid the estimation of
the indicial function.

5.2 Flight Data

This section shows data from a spin research vehicle {SRV) and demonstrates
the need to use indicial function representations in the hig angle«of-attack region.
The 3/8-scaled unpowered model of a high performance fighter aircraft is dropped
from a B-52 and is controlled remotely. The vehicle provides an effective means to
conduct aerodynamic tests in post-stall and spin regions. Though the flight test.
lasts several minutes, a 40-second long segment shown in Figure 14 is studied. A
standard set of on-board instrumentation is available including $3-axis rate and
attitude gyros and 3-axis accelerometer, dynamic pressure, angle— attack, sideslip
angle, static pressure, and control position). _

y We will look at data qualitatively in this report to show the need for integro-
differential function models or a function with memory. Figure 15 shows the normal
force coeflicient time history a5 a function of angle-of- attack. Based on known air-
craft behavior, the lift coeffi ‘ent depends primarily on angle-of-attack and to a
lesser extent on clevator deflection and other aerodynamic variables. - The depen-
- dence of Cy on variables other than the angle-of-attack cannot account for the large
loops. Note that for fixed controls between 283 and 40s, the aircraff exhibits os-
cillatory behavior with increasing angle-of- attack. This is an interesting region to
 analyze because forces and moments are affected only by aerodynamic variables.

- Figure 15 indicates that the phenamenon is not: aerodynamnc hysterisis, because
in hysterisis the function follows one path for increasing and another one for de-
creasing values of the independent variable. The behavior of the aircraft for angle-
of-attack between 70° and 80° is qualitatively very mterestmg. It is known from
linearized analysis [8] that over 400 angle-of-attack, the magnitude of Cy, decreases
with angle-of-attack, In the time history shown in Figure 16 the a.ngle-of—a,ttack
suddenly jumps from abous 40° to 80° and the lift stays high (corresponding more
to the 40° lift coefficient than the 80° lift coefficient). Then about 0.5 sec later the
lift coefficient drops suddenly. Physcially, this may occur because a sudden increase

13



in angle-of-attack causes the flow to remain attached for a short period of tirne and
the lift increases dramatically. The flow must event. .lly separate causing the lift to
drop. The phenomenon may be related to what has been referred to as “dynamic
[ifL”,

The plote also show that the natural frequency is about 0.5 Hz. Thus an indicial
function with 0.5 sec. delay should be clearly identifiable. The identified model had
been shown previously as Figure 17 in Reference [5).

Note that for responses below 40° angle-of-attack, the indicial model i3 nol
identifiable and the indicial term may be approximated by a lumped coefficient.

L4
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VI. SUMMARY AND CONCLUSIONS

The report presented approaches to identify intergro-different.al equalion mod-
els which arise in aeroeclastic and unsteady aerodynamics. The foliowing conclusions
may be drawn.

I. When the product of {requency of motion and maximum time delay is much
smaller than one, the integral term can be approximated by a consiant.
When this product is of the order of, or larger thon one, the integral term
cannol be approximated.

2. Integro-difTerential modcls are in general non-identifiable. Approximations
are needed to bring about identifiability.

3. Least-squares method may be used for model determination but the maxi-
murm likelihood technique is nceded to accurately estimale parameters.

4. High angle-of-attack and post-stall/spin region appears to have character-
istics, which can be satisfied by indicial models.

More work though is needed to advance better understanding of unsteady- aerody-
namics and aeroelastic phenomena from measured dala.

15
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Appendix A

APPROXIMATION OF [ H,n, (r)a(t - r)dr
4]

We will altempt to approximate this integral by ¢,.. . For this approxiamtion
to hold in steady state

Cm,, (t) = I{ma (00) (AI)

The error is approximated as follows:

€= -/‘Hm‘,(r)d(t =~ 7)dr - Cyy, oft)
- f{H,,.,, (r) = Hun, (00) }&{2 = r)dr (4.2)

It is roasonable to assume that H,,,(r) reaches its steady-state value X,,,(co) for
r - T . Then

“{trm(f) . h’rrm (oo)| < (T - T)Iﬁmd.lmuz r<T
= 0 r>T {4.3)

Then {A.2) becomes

¢ < ¢|Hm,|mas GinaeT? (A.4)

where ¢ is a constant. Since H,,, is the same as F,,(r) and the integral of F,,_(r)
from O to T is C,,,, Equation (A.4) becomes

€< C'Cmaa.rmmT (A-S)

Equalions can also be developed to approximate the integral term by a combi-
nation of « and & coefficients.
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TABLE 1: COMPUTED ESTIMATION ERROR FOR LEAST SQUARES
(600 Points, RMS Noise in q = .001)

Parameter Value Estimation Error
M, -5.0 .0048

M, -2.0 0167

M,, -5.0 0045

M, -0.0 .00004

M, (1) 0.3 0253

M, (.2) 0.6 0213

M, (.3) -0.7 0183

M,(.4) -0.4 0128

M, (.5) -0.2 .0045



TABLE 2: ESTIMATED

(wT = 1.5)

Parameters
M(I
M, (equi)

M.,
M,

PARAMETERS IN

Values

-5.0
-4.1
-5.0
0.0

REDUCED MODEL

Estimated Value
(No noise)

-9.75
-3.79
-6.28

+0.0
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TABLE 3: ESTIMATED PARAMETERS IN

(wT = .15)

Parameters

M,
My(equr.)
Ms,
M,

Values

-5.0
-4.1
-5.0

0.0

REDUCED MODEL

Estimated Value
(No noise)

-6.3

-4.4

-5.3

1+-0.0
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